Extracting Ontological Knowledge from Textual Descriptions

نویسندگان

  • Kevin Alex Mathews
  • P. Sreenivasa Kumar
چکیده

Authoring of OWL-DL ontologies is intellectually challenging and to make this process simpler, many systems accept natural language text as input. A text-based ontology authoring approach can be successful only when it is combined with an effective method for extracting ontological axioms from text. Extracting axioms from unrestricted English input is a substantially challenging task due to the richness of the language. Controlled natural languages (CNLs) have been proposed in this context and these tend to be highly restrictive. In this paper, we propose a new CNL called TEDEI (TExtual DEscription Identifier) whose grammar is inspired by the different ways OWL-DL constructs are expressed in English. We built a system that transforms TEDEI sentences into corresponding OWL-DL axioms. Now, ambiguity due to different possible lexicalizations of sentences and semantic ambiguity present in sentences are challenges in this context. We find that the best way to handle these challenges is to construct axioms corresponding to alternative formalizations of the sentence so that the end-user can make an appropriate choice. The output is compared against human-authored axioms and in substantial number of cases, human-authored axiom is indeed one of the alternatives given by the system. The proposed system substantially enhances the types of sentence structures that can be used for ontology authoring.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Coreferring Text-extracted Event Descriptions with the aid of Ontological Reasoning

Systems for automatic extraction of semantic information about events from large textual resources are now available: these tools are capable to generate RDF datasets about text extracted events and this knowledge can be used to reason over the recognized events. On the other hand, text based tasks for event recognition, as for example event coreference (i.e. recognizing whether two textual des...

متن کامل

OntoVerbal: a Generic Tool and Practical Application to SNOMED CT

Ontology development is a non-trivial task requiring expertise in the chosen ontological language. We propose a method for making the content of ontologies more transparent by presenting, through the use of natural language generation, naturalistic descriptions of ontology classes as textual paragraphs. The method has been implemented in a proof-ofconcept system, OntoVerbal, that automatically ...

متن کامل

Automatic population of knowledge bases with multimodal data about named entities

Knowledge bases are of great importance for Web search, recommendations, and many Information Retrieval tasks. However, maintaining them for not so popular entities is often a bottleneck. Typically, such entities have limited textual coverage and only a few ontological facts. Moreover, these entities are not well populated with multimodal data, such as images, videos, or audio recordings. The g...

متن کامل

Extracting domain knowledge from tables of contents

Knowledge in textual form is always presented as visually and hierarchically structured units of text, which is particularly true in the case of academic texts. One research hypothesis of the ongoing project Knowledge ordering in texts— text structure and structure visualisations as sources of natural ontologies1 is that the textual structure of academic texts effectively mirrors essential part...

متن کامل

Ion Channel ElectroPhysiology Ontology (ICEPO) – a case study of text mining assisted ontology development

BACKGROUND Computational modeling of biological cascades is of great interest to quantitative biologists. Biomedical text has been a rich source for quantitative information. Gathering quantitative parameters and values from biomedical text is one significant challenge in the early steps of computational modeling as it involves huge manual effort. While automatically extracting such quantitativ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1709.08448  شماره 

صفحات  -

تاریخ انتشار 2017